Banach--Saks properties of $C^*$-algebras and Hilbert $C^*$-modules
نویسندگان
چکیده
منابع مشابه
Fe b 20 09 MODULE WEAK BANACH - SAKS AND MODULE SCHUR PROPERTIES OF HILBERT C ∗ - MODULES
Continuing the research on the Banach-Saks and Schur properties started in (cf. [10]) we investigate analogous properties in the module context. As an environment serves the class of Hilbert C∗-modules. Some properties of weak module topologies on Hilbert C∗-modules are described. Natural module analogues of the classical weak Banach-Saks and the classical Schur properties are defined and studi...
متن کاملHilbert modules over pro-C*-algebras
In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کاملSome Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Journal of Mathematical Analysis
سال: 2009
ISSN: 1735-8787
DOI: 10.15352/bjma/1261086713